
microservices sequence diagram example
Microservices Sequence Diagram Example: Visualizing Interactions in Modern
Architectures

microservices sequence diagram example offers an insightful way to visualize
the dynamic interactions between various components in a microservices
architecture. As businesses increasingly adopt microservices for their
flexibility and scalability, understanding the flow of communication between
services becomes essential. Sequence diagrams, a type of UML (Unified
Modeling Language) diagram, provide a clear, step-by-step view of how
microservices collaborate to fulfill user requests or internal processes.

In this article, we’ll explore what a microservices sequence diagram is, why
it’s crucial in designing and maintaining microservices, and dive into a
practical microservices sequence diagram example that highlights common
patterns and challenges. Whether you're a developer, architect, or product
manager, grasping this concept can enhance your ability to build resilient,
efficient microservices systems.

Understanding Microservices and Sequence
Diagrams

Before jumping into the example, it helps to clarify the building blocks.
Microservices architecture breaks down a large application into smaller,
independent services that communicate through APIs. Each microservice handles
a specific business capability, which allows for easier updates, scalability,
and deployment.

Sequence diagrams, on the other hand, are interaction diagrams used to
showcase how different components or objects interact in a time-ordered
sequence. They visually represent the exchange of messages, method calls, and
responses between entities, making them perfect for mapping out microservices
communication.

Why Use Sequence Diagrams for Microservices?

Microservices often involve complex communication patterns, including
synchronous calls, asynchronous messaging, event-driven interactions, and
more. Sequence diagrams help:

- Clarify the flow of requests and responses between services.
- Identify potential bottlenecks or points of failure.
- Document workflows for onboarding and collaboration.
- Aid in debugging by visualizing where issues might arise.

- Support design decisions around service boundaries and responsibilities.

By leveraging sequence diagrams, teams gain a shared understanding of how
microservices collaborate, which is invaluable in distributed system design.

Microservices Sequence Diagram Example: An E-
commerce Order Processing Flow

To make things tangible, let’s consider a common scenario in an e-commerce
platform: processing an order. This workflow typically involves several
microservices such as the User Service, Order Service, Inventory Service,
Payment Service, and Notification Service. Below is a detailed microservices
sequence diagram example illustrating the interaction steps.

Step-by-Step Interaction

1. **User Places Order**
The process begins when the User Service receives an order request from the
customer interface.

2. **Order Service Validates and Creates Order**
The User Service forwards the order details to the Order Service, which
validates the data and creates an order record.

3. **Inventory Check**
The Order Service calls the Inventory Service to verify if the requested
items are in stock.

4. **Inventory Confirmation or Rejection**
The Inventory Service confirms availability, reserving the stock if possible,
or rejects the request if items are out of stock.

5. **Payment Processing**
Upon successful inventory confirmation, the Order Service triggers the
Payment Service to process the payment.

6. **Payment Confirmation**
The Payment Service authorizes the payment and sends a confirmation back to
the Order Service.

7. **Order Status Update**
The Order Service updates the order status to ‘Confirmed’ and triggers the
Notification Service.

8. **User Notification**
The Notification Service sends an email or SMS to the customer confirming the

order.

Visualizing the Sequence Diagram

In a microservices sequence diagram depicting this flow, you’d see vertical
lifelines representing each service (User, Order, Inventory, Payment,
Notification). Horizontal arrows indicate the messages or API calls flowing
between them in chronological order. This visualization helps identify
synchronous calls (e.g., Order Service waiting for inventory confirmation)
and asynchronous events (like notifications sent after order confirmation).

Best Practices for Creating Effective
Microservices Sequence Diagrams

Creating detailed and clear sequence diagrams for microservices can be
challenging due to the complexity and scale of interactions. Here are some
tips to keep in mind:

1. Focus on Specific Use Cases
Avoid trying to capture the entire system in one diagram. Instead, narrow
down on a particular business process or user interaction. This keeps the
diagram manageable and meaningful.

2. Distinguish Between Synchronous and Asynchronous
Communication
Use solid arrows for synchronous calls and dashed arrows for asynchronous
messages or events. This distinction clarifies the communication pattern and
potential latency points.

3. Represent Error Handling and Timeouts
Include alternative flows showing what happens if a service fails or times
out. This enhances the diagram’s usefulness in understanding system
resilience.

4. Use Consistent Naming and Notation
Maintain clear labels for services, methods, and messages to avoid confusion.
Consistency helps when diagrams are shared across teams.

5. Integrate with Other UML Diagrams
Sequence diagrams complement component diagrams, deployment diagrams, and
data flow diagrams. Use them in tandem for a holistic view of your
microservices architecture.

Tools for Designing Microservices Sequence
Diagrams

Several tools can assist in creating visually appealing and accurate sequence
diagrams tailored for microservices:

- **PlantUML:** A text-based UML tool that supports sequence diagrams and can
integrate into CI/CD pipelines.
- **Lucidchart:** Offers drag-and-drop functionality with templates for
microservices architecture diagrams.
- **Draw.io (diagrams.net):** Free and versatile, suitable for quick
diagramming.
- **Microsoft Visio:** A professional tool with robust UML support.
- **SequenceDiagram.org:** A simple online tool focused solely on sequence
diagrams.

Choosing a tool often depends on your team’s workflow, collaboration needs,
and integration with other documentation practices.

Challenges When Modeling Microservices
Interactions

While sequence diagrams are helpful, modeling microservices interactions
comes with its own set of challenges:

- **Handling Asynchronous Messaging:** Many microservices communicate via
message queues or event streams, which can be tricky to represent
sequentially.
- **Scaling Complexity:** As the number of services grows, diagrams can
become cluttered and hard to read.
- **Dynamic Service Discovery:** Microservices may dynamically discover and
call other services, which can be difficult to capture statically.
- **Versioning and Evolution:** Services evolve independently, requiring
diagrams to be updated constantly to stay relevant.

To overcome these, consider creating layered diagrams that show high-level
flows first, then zoom into specific interactions. Incorporate notes or
annotations to explain complex parts.

Integrating Microservices Sequence Diagrams in
Development Workflows

Incorporating sequence diagrams into your development lifecycle can improve
communication and reduce misunderstandings. Here’s how:

- **Design Phase:** Use diagrams to plan service interactions before coding
begins.
- **Code Reviews:** Reference diagrams to ensure implementation matches
design.
- **Onboarding:** Help new team members understand system workflows quickly.
- **Incident Analysis:** Map out failed interactions during troubleshooting.
- **Documentation:** Maintain diagrams as living documents alongside code.

By embedding sequence diagrams into these stages, teams foster a culture of
clarity and shared understanding.

Microservices sequence diagram example scenarios like the e-commerce order
processing flow bring to life the invisible choreography happening behind
user actions. They help bridge the gap between abstract architecture and
concrete implementation details. Whether you’re designing new microservices
or maintaining existing ones, investing time in creating and refining
sequence diagrams will pay dividends in smoother development, easier
debugging, and better collaboration.

Frequently Asked Questions

What is a microservices sequence diagram example?
A microservices sequence diagram example illustrates the interaction between
multiple microservices over time, showing the sequence of messages exchanged
to complete a business process or transaction.

Why are sequence diagrams important in microservices
architecture?
Sequence diagrams help visualize the communication flow between
microservices, making it easier to understand dependencies, identify
bottlenecks, and design robust and scalable distributed systems.

Can you provide a simple microservices sequence

diagram example for an e-commerce checkout process?
Yes. In the sequence diagram, the client sends a checkout request to the
Order Service, which communicates with Inventory Service to check stock, then
with Payment Service to process payment, and finally confirms the order back
to the client.

How do microservices sequence diagrams handle
asynchronous communication?
Asynchronous communication in microservices sequence diagrams is represented
using asynchronous message arrows, often with return messages shown
separately or omitted, highlighting the non-blocking nature of the
interaction.

What tools can be used to create microservices
sequence diagrams?
Popular tools include UML modeling software like Lucidchart, Microsoft Visio,
PlantUML, Draw.io, and online diagramming platforms that support sequence
diagram creation.

How detailed should a microservices sequence diagram
example be?
The level of detail depends on the audience; for high-level understanding,
focus on main service interactions, while for technical design, include
message payloads, error handling, and asynchronous flows.

Can microservices sequence diagrams help in
debugging and monitoring?
Yes, they provide a clear representation of service interactions, which can
assist in tracing issues, understanding failure points, and improving
monitoring strategies in complex microservices environments.

Are there best practices for creating microservices
sequence diagrams?
Best practices include keeping diagrams focused on specific use cases,
clearly labeling services and messages, differentiating synchronous and
asynchronous calls, and regularly updating diagrams to reflect system
changes.

Additional Resources
Microservices Sequence Diagram Example: A Detailed Exploration of Inter-
Service Communication

microservices sequence diagram example serves as a crucial tool for
architects, developers, and system analysts aiming to visualize and
comprehend the complex interactions within distributed systems. As
microservices architecture gains widespread adoption due to its scalability
and modularity, understanding the flow of communication between independent
services becomes imperative. Sequence diagrams, a subset of UML (Unified
Modeling Language) diagrams, provide a timeline-based representation of how
various components within a microservices ecosystem collaborate to fulfill a
business process.

This article delves into the practical application of microservices sequence
diagrams, illustrating how these diagrams map inter-service communication
patterns, facilitate debugging, and enhance system documentation. By
examining a concrete microservices sequence diagram example, we aim to
clarify the nuances of asynchronous messaging, service orchestration, and
fault tolerance inherent in microservices architectures.

Understanding Microservices and Their
Communication Complexities

Microservices architecture decomposes a monolithic application into a
collection of loosely coupled services, each responsible for a specific
business capability. While this modular approach offers flexibility and
independent deployment cycles, it introduces challenges in managing
communication and data consistency across services.

Unlike monolithic systems where function calls happen within a single
process, microservices often communicate over the network using HTTP/REST,
gRPC, message queues, or event-driven mechanisms. This distributed nature
leads to intricate interaction patterns, making it difficult to trace the
sequence of calls and responses during a transaction lifecycle without proper
visualization tools.

The Role of Sequence Diagrams in Microservices
Design

Sequence diagrams graphically represent the order of message exchanges
between services over time. They visualize the lifelines of interacting
services and depict synchronous or asynchronous calls, responses, and
exceptions.

By employing a microservices sequence diagram example, developers can:

Clarify service dependencies and interaction flows

Identify potential bottlenecks or points of failure

Document and communicate service contracts and APIs

Support debugging by tracing real-time message flows

Facilitate design reviews and architectural decisions

The diagram acts as a blueprint for both implementation and operational
monitoring, bridging the gap between conceptual design and practical
execution.

Microservices Sequence Diagram Example: An E-
Commerce Order Processing Flow

To concretize the concept, consider an e-commerce platform where a customer
places an order. The order processing involves multiple microservices:

API Gateway1.

Order Service2.

Inventory Service3.

Payment Service4.

Notification Service5.

Below is a breakdown of the interaction sequence:

The client sends an order request to the API Gateway.1.

The API Gateway forwards the request to the Order Service.2.

The Order Service validates the order and checks inventory by calling3.
the Inventory Service.

The Inventory Service confirms product availability.4.

The Order Service then initiates payment processing via the Payment5.
Service.

The Payment Service processes the payment and returns the result.6.

Upon successful payment, the Order Service updates the order status.7.

The Order Service triggers a notification through the Notification8.
Service to inform the customer.

This sequence can be represented in a microservices sequence diagram example,
capturing synchronous calls such as the Inventory Service check and
asynchronous events like notifications.

Key Features Highlighted in the Diagram

Lifelines: Each microservice is represented by a vertical lifeline
showing its active period.

Messages: Arrows indicate requests and responses, distinguishing
synchronous (solid lines) and asynchronous (dashed lines) communication.

Activation Bars: Highlight the time during which a service is active in
processing a request.

Conditional Flows: Represent checks such as inventory availability and
payment success.

Exception Handling: Optionally denotes error scenarios, e.g., payment
failure triggering compensating actions.

The diagram's visual clarity aids in understanding how responsibilities are
divided and how services collaborate to complete the order processing
workflow.

Comparing Synchronous vs. Asynchronous
Communication in Sequence Diagrams

Microservices often leverage a mix of synchronous and asynchronous
communication, each with trade-offs that the sequence diagram must accurately
depict.

Synchronous Communication

Synchronous calls imply a request-response pattern where the caller waits for
the callee to process and return a result before proceeding. In the example,
the Order Service’s calls to Inventory and Payment Services are synchronous,
as each step depends on the previous operation's success.

Pros:

Simple to implement and understand

Ensures immediate feedback for dependent services

Cons:

Can lead to tight coupling and reduced fault tolerance

Potential latency if downstream services are slow

Asynchronous Communication

Asynchronous messaging allows services to communicate via events or message
queues, decoupling sender and receiver temporally. The Notification Service
receiving events after order completion exemplifies this pattern.

Pros:

Improves scalability and resilience

Enables event-driven architectures

Cons:

Increased complexity in ensuring message delivery and ordering

Harder to trace and debug without adequate tooling

A detailed microservices sequence diagram example must differentiate these
communication types, often using distinct arrow styles or annotations, to
provide an accurate system portrayal.

Tools and Best Practices for Creating
Microservices Sequence Diagrams

Several tools facilitate the creation of sequence diagrams tailored to
microservices environments:

PlantUML: Text-based diagram generation supporting integration with
CI/CD pipelines.

Lucidchart: Collaborative online diagramming with templates for
microservices.

SequenceDiagram.org: Lightweight, web-based sequence diagram editor.

Enterprise Architect: Comprehensive UML modeling with support for large-
scale systems.

Best practices include:

Maintain simplicity by focusing on critical interactions rather than
exhaustive detail.

Use consistent notation to distinguish synchronous vs. asynchronous
calls.

Incorporate error flows and retries to reflect real-world scenarios.

Keep diagrams updated alongside evolving service APIs and workflows.

Leverage color coding or annotations for clarity and emphasis.

Adhering to these guidelines ensures that the microservices sequence diagram
example remains a valuable asset throughout the software development
lifecycle.

Challenges in Modeling Microservices with
Sequence Diagrams

Despite their utility, sequence diagrams for microservices face inherent
challenges:

Scalability: Large-scale systems with dozens of microservices can result
in overly complex diagrams that are difficult to interpret.

Dynamic Behavior: Microservices may exhibit dynamic routing or circuit
breaker patterns, complicating static sequence representations.

Asynchronous Messaging: Event-driven interactions may span long periods,
making linear sequence diagrams less suitable.

Versioning and Evolution: Frequent changes in service interfaces require
continuous updates to diagrams, risking outdated documentation.

Mitigating these issues often involves creating focused diagrams for specific
use cases or workflows instead of attempting to model the entire system in a
single diagram.

Integrating Sequence Diagrams with Modern
Microservices Practices

The rise of DevOps, continuous integration/continuous deployment (CI/CD), and
observability tools influences how sequence diagrams are used in
microservices contexts. Automated generation of sequence diagrams from
distributed tracing data, for example, offers a dynamic and accurate
reflection of runtime interactions, complementing manually crafted diagrams.

Moreover, combining sequence diagrams with architecture decision records
(ADRs) and API specifications (e.g., OpenAPI) enhances communication across
cross-functional teams. This integrated approach supports faster onboarding,
better alignment, and proactive identification of architectural risks.

In essence, a microservices sequence diagram example is not merely a static
illustration but a dynamic instrument that encapsulates the intricate
choreography of services within distributed systems. When thoughtfully
constructed and maintained, these diagrams illuminate the pathways of inter-
service communication, foster shared understanding, and guide the evolution
of resilient, scalable microservices architectures.

Microservices Sequence Diagram Example

Find other PDF articles:
https://old.rga.ca/archive-th-029/pdf?ID=tgp55-1246&title=workouts-at-home-for-men.pdf

https://old.rga.ca/archive-th-034/files?title=microservices-sequence-diagram-example.pdf&trackid=CYo06-7093
https://old.rga.ca/archive-th-029/pdf?ID=tgp55-1246&title=workouts-at-home-for-men.pdf

  microservices sequence diagram example: Microservices by Example Biswa Pujarini
Mohapatra, Baishakhi Banerjee, Gaurav Aroraa, 2019-01-24 A book with lot of practical and
architectural styles for Microservices using .NET Core DESCRIPTION This book predominately
covers Microservices architecture with real-world example which can help professionals on case
adoption of this technology. Following the trend of modularity in real world, the idea behind
Microservice by Examples is to allow developers to build their applications from various independent
components which can be easily changed, removed or upgraded. Also, it is relevant now because of
enterprises are moving towards DevOps/ Modernisation, this book will emphasise on containers and
Dockers as well. Ê KEY FEATURES ¥ Ê Ê Ê Understand core concept of Microservices ¥ Ê Ê Ê
Understand various Microservices design patterns ¥ Ê Ê Ê Build microservices application using
real-world examples ¥ Ê Ê Ê Deployment of microservices using Docker ¥ Ê Ê Ê Microservices
Orchestration using Azure Service Fabric ¥ Ê Ê Ê Azure DevOps (CI/CD) using MSBuild ¥ Ê Ê Ê
Understand the concept of API Management ¥ Ê Ê Ê Authentication/Authorization using JWT token
for Microservices ¥ Ê Ê Ê Integrating Microservices in Angular 6.0 Single Page Application. ¥ Ê Ê Ê
Dos and donÕts during integration ¥ Ê Ê Ê Ensuring End to end testing Ê WHAT WILL YOU LEARN
¥Ê Ê Ê Microservices and its ArchitectureÊ ¥Ê Ê Ê Designing the microservice application layerÊ ¥Ê
Ê Ê Hands on Micro services development of Online Hotel Booking AppÊ ¥Ê Ê Ê Deployment of
Microservices for App-Modernization at Scale with DockerÊ ¥Ê Ê Ê Service Orchestration of
Microservices using Azure Service FabricÊ ¥Ê Ê Ê Integrating various componentsÊÊ ¥Ê Ê Ê Hands
on Integration with API Management ¥Ê Ê Ê Testing MicroservicesÊ Ê WHO THIS BOOK IS FOR
This book is for .NET Core developers who are new to microservices and want to learn, understand
the microservices architecture. Ê Table of Contents 1. Ê Ê An introduction to MicroservicesÊ 2. Ê Ê
Micro services ArchitectureÊ 3. Ê Ê Designing the microservice application layerÊ 4. Ê Ê Hands on
Micro services development of Online Hotel Booking AppÊ 5. Ê Ê Deployment of Microservices for
App-Modernization at Scale with DockerÊ 6. Ê Ê Service Orchestration of Microservices using Azure
Service FabricÊ 7. Ê Ê Integrating various componentsÊÊ 8. Ê Ê Hands on Integration with API
Management 9. Ê Ê Testing MicroservicesÊ 10. Ê Extending application with loggingÊ 11. Ê What is
next?
  microservices sequence diagram example: Microservices for the Enterprise Kasun
Indrasiri, Prabath Siriwardena, 2018-11-14 Understand the key challenges and solutions around
building microservices in the enterprise application environment. This book provides a
comprehensive understanding of microservices architectural principles and how to use
microservices in real-world scenarios. Architectural challenges using microservices with service
integration and API management are presented and you learn how to eliminate the use of
centralized integration products such as the enterprise service bus (ESB) through the use of
composite/integration microservices. Concepts in the book are supported with use cases, and
emphasis is put on the reality that most of you are implementing in a “brownfield” environment in
which you must implement microservices alongside legacy applications with minimal disruption to
your business. Microservices for the Enterprise covers state-of-the-art techniques around
microservices messaging, service development and description, service discovery, governance, and
data management technologies and guides you through the microservices design process. Also
included is the importance of organizing services as core versus atomic, composite versus
integration, and API versus edge, and how such organization helps to eliminate the use of a central
ESB and expose services through an API gateway. What You'll Learn Design and develop
microservices architectures with confidence Put into practice the most modern techniques around
messaging technologies Apply the Service Mesh pattern to overcome inter-service communication
challenges Apply battle-tested microservices security patterns to address real-world scenarios
Handle API management, decentralized data management, and observability Who This Book Is For
Developers and DevOps engineers responsible for implementing applications around a microservices
architecture, and architects and analysts who are designing such systems

  microservices sequence diagram example: Microservices: Up and Running Ronnie Mitra,
Irakli Nadareishvili, 2020-11-25 Microservices architectures offer faster change speeds, better
scalability, and cleaner, evolvable system designs. But implementing your first microservices
architecture is difficult. How do you make myriad choices, educate your team on all the technical
details, and navigate the organization to a successful execution to maximize your chance of success?
With this book, authors Ronnie Mitra and Irakli Nadareishvili provide step-by-step guidance for
building an effective microservices architecture. Architects and engineers will follow an
implementation journey based on techniques and architectures that have proven to work for
microservices systems. You'll build an operating model, a microservices design, an infrastructure
foundation, and two working microservices, then put those pieces together as a single
implementation. For anyone tasked with building microservices or a microservices architecture, this
guide is invaluable. Learn an effective and explicit end-to-end microservices system design Define
teams, their responsibilities, and guidelines for working together Understand how to slice a big
application into a collection of microservices Examine how to isolate and embed data into
corresponding microservices Build a simple yet powerful CI/CD pipeline for infrastructure changes
Write code for sample microservices Deploy a working microservices application on Amazon Web
Services
  microservices sequence diagram example: Testing Java Microservices Jason Porter, Alex
Soto, Andrew Gumbrecht, 2018-08-03 Summary Testing Java Microservices teaches you to
implement unit and integration tests for microservice systems running on the JVM. You'll work with
a microservice environment built using Java EE, WildFly Swarm, and Docker. You'll learn how to
increase your test coverage and productivity, and gain confidence that your system will work as you
expect. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from
Manning Publications. About the Technology Microservice applications present special testing
challenges. Even simple services need to handle unpredictable loads, and distributed message-based
designs pose unique security and performance concerns. These challenges increase when you throw
in asynchronous communication and containers. About the Book Testing Java Microservices teaches
you to implement unit and integration tests for microservice systems running on the JVM. You'll
work with a microservice environment built using Java EE, WildFly Swarm, and Docker. You'll
advance from writing simple unit tests for individual services to more-advanced practices like chaos
or integration tests. As you move towards a continuous-delivery pipeline, you'll also master live
system testing using technologies like the Arquillian, Wiremock, and Mockito frameworks, along
with techniques like contract testing and over-the-wire service virtualization. Master these
microservice-specific practices and tools and you'll greatly increase your test coverage and
productivity, and gain confidence that your system will work as you expect. What's Inside Test
automation Integration testing microservice systems Testing container-centric systems Service
virtualization About the Reader Written for Java developers familiar with Java EE, EE4J, Spring, or
Spring Boot. About the Authors Alex Soto Bueno and Jason Porter are Arquillian team members.
Andy Gumbrecht is an Apache TomEE developer and PMC. They all have extensive
enterprise-testing experience. Table of Contents An introduction to microservices Application under
test Unit-testing microservices Component-testing microservices Integration-testing microservices
Contract tests End-to-end testing Docker and testing Service virtualization Continuous delivery in
microservices
  microservices sequence diagram example: Ultimate Microservices with RabbitMQ Peter
Morlion, 2024-05-28 TAGLINE Learn the ins and outs of a RabbitMQ-enabled microservices system.
KEY FEATURES ● Discover the fundamental principles of microservices and their organizational
impact. ● Develop a deep understanding of messaging and RabbitMQ within microservices
architecture. ● Acquire the expertise to seamlessly integrate and maximize the benefits of
microservices with RabbitMQ for creating of robust and high-performing systems. DESCRIPTION
Embark on a transformative journey into the world of microservices architecture with 'Ultimate
Microservices with RabbitMQ' This comprehensive resource equips you with the knowledge and

tools needed to design, deploy, and manage scalable microservices architectures using RabbitMQ as
a messaging backbone. From laying the groundwork with foundational concepts to implementing
advanced techniques, this book covers everything you need to know to build resilient and
high-performing microservices-based systems. It dives into the intricacies of RabbitMQ messaging to
leverage its capabilities to facilitate communication and data exchange across distributed systems.
You will discover best practices for designing scalable and fault-tolerant microservices architectures,
and gain insights into effective integration strategies. The book will help you learn to combine
microservices and RabbitMQ for designing, building and maintaining robust architectures that
leverage the strengths of both paradigms. By the end of this book, you will be primed to navigate the
complexities of modern software development with confidence, driving innovation and efficiency in
professional endeavors. WHAT WILL YOU LEARN ● Gain a solid understanding of microservices
fundamentals and their organizational impact. ● Explore various messaging paradigms and their
application within RabbitMQ. ● Implement RabbitMQ as a message broker within your
microservices architecture. ● Understand the prerequisites for maintaining a resilient microservices
setup with RabbitMQ. ● Explore upcoming trends in message-driven microservices architectures.
WHO IS THIS BOOK FOR? This book is tailored for software developers, architects, and engineering
managers intrigued by microservices and messaging with RabbitMQ. Whether you're an entry-level
developer or a seasoned architect, this book offers valuable insights and guidance to help you grasp
the fundamental concepts and practical considerations essential for navigating the complexities of
microservices with RabbitMQ. TABLE OF CONTENTS 1. An Introduction to Microservices 2. A
Deeper Look Into Microservices 3. An Introduction to RabbitMQ 4. RabbitMQ Use Cases 5.
Designing a Microservices Architecture With RabbitMQ 6. Running A Microservices Architecture
With RabbitMQ 7. The Future of Microservices 8. The Future of RabbitMQ Index
  microservices sequence diagram example: Spring 5.0 Microservices Rajesh R V,
2017-07-13 A practical, comprehensive, and user-friendly approach to building microservices in
Spring About This Book Update existing applications to integrate reactive streams released as a part
of Spring 5.0 Learn how to use Docker and Mesos to push the boundaries and build successful
microservices Upgrade the capability model to implement scalable microservices Who This Book Is
For This book is ideal for Spring developers who want to build cloud-ready, Internet-scale
applications, and simple RESTful services to meet modern business demands. What You Will Learn
Familiarize yourself with the microservices architecture and its benefits Find out how to avoid
common challenges and pitfalls while developing microservices Use Spring Boot and Spring Cloud to
develop microservices Handle logging and monitoring microservices Leverage Reactive
Programming in Spring 5.0 to build modern cloud native applications Manage internet-scale
microservices using Docker, Mesos, and Marathon Gain insights into the latest inclusion of Reactive
Streams in Spring and make applications more resilient and scalable In Detail The Spring
Framework is an application framework and inversion of the control container for the Java platform.
The framework's core features can be used by any Java application, but there are extensions to build
web applications on top of the Java EE platform. This book will help you implement the microservice
architecture in Spring Framework, Spring Boot, and Spring Cloud. Written to the latest
specifications of Spring that focuses on Reactive Programming, you'll be able to build modern,
internet-scale Java applications in no time. The book starts off with guidelines to implement
responsive microservices at scale. Next, you will understand how Spring Boot is used to deploy
serverless autonomous services by removing the need to have a heavyweight application server.
Later, you'll learn how to go further by deploying your microservices to Docker and managing them
with Mesos. By the end of the book, you will have gained more clarity on the implementation of
microservices using Spring Framework and will be able to use them in internet-scale deployments
through real-world examples. Style and approach The book takes a step-by-step approach on
developing microservices using Spring Framework, Spring Boot, and a set of Spring Cloud
components that will help you scale your applications.
  microservices sequence diagram example: Microservices in Action Morgan Bruce, Paulo A

Pereira, 2018-10-03 The one [and only] book on implementing microservices with a real-world,
cover-to-cover example you can relate to. - Christian Bach, Swiss Re Microservices in Action is a
practical book about building and deploying microservice-based applications. Written for developers
and architects with a solid grasp of service-oriented development, it tackles the challenge of putting
microservices into production. Purchase of the print book includes a free eBook in PDF, Kindle, and
ePub formats from Manning Publications. About the Technology Invest your time in designing great
applications, improving infrastructure, and making the most out of your dev teams. Microservices
are easier to write, scale, and maintain than traditional enterprise applications because they're built
as a system of independent components. Master a few important new patterns and processes, and
you'll be ready to develop, deploy, and run production-quality microservices. About the Book
Microservices in Action teaches you how to write and maintain microservice-based applications.
Created with day-to-day development in mind, this informative guide immerses you in real-world use
cases from design to deployment. You'll discover how microservices enable an efficient continuous
delivery pipeline, and explore examples using Kubernetes, Docker, and Google Container Engine.
What's inside An overview of microservice architecture Building a delivery pipeline Best practices
for designing multi-service transactions and queries Deploying with containers Monitoring your
microservices About the Reader Written for intermediate developers familiar with enterprise
architecture and cloud platforms like AWS and GCP. About the Author Morgan Bruce and Paulo A.
Pereira are experienced engineering leaders. They work daily with microservices in a production
environment, using the techniques detailed in this book. Table of Contents Designing and running
microservices Microservices at SimpleBank Architecture of a microservice application Designing
new features Transactions and queries in microservices Designing reliable services Building a
reusable microservice framework Deploying microservices Deployment with containers and
schedulers Building a delivery pipeline for microservices Building a monitoring system Using logs
and traces to understand behavior Building microservice teams PART 1 - The lay of the land PART 2
- Design PART 3 - Deployment PART 4 - Observability and ownership
  microservices sequence diagram example: Information Science and Applications 2018
Kuinam J. Kim, Nakhoon Baek, 2018-07-23 This book contains selected papers from the 9th
International Conference on Information Science and Applications (ICISA 2018) and provides a
snapshot of the latest issues encountered in technical convergence and convergences of security
technology. It explores how information science is core to most current research, industrial and
commercial activities and consists of contributions covering topics including Ubiquitous Computing,
Networks and Information Systems, Multimedia and Visualization, Middleware and Operating
Systems, Security and Privacy, Data Mining and Artificial Intelligence, Software Engineering, and
Web Technology. The proceedings introduce the most recent information technology and ideas,
applications and problems related to technology convergence, illustrated through case studies, and
reviews converging existing security techniques. Through this volume, readers will gain an
understanding of the current state-of-the-art information strategies and technologies of convergence
security. The intended readership includes researchers in academia, industry and other research
institutes focusing on information science and technology.
  microservices sequence diagram example: Evolve the Monolith to Microservices with Java
and Node Sandro De Santis, Luis Florez, Duy V Nguyen, Eduardo Rosa, IBM Redbooks, 2016-12-05
Microservices is an architectural style in which large, complex software applications are composed
of one or more smaller services. Each of these microservices focuses on completing one task that
represents a small business capability. These microservices can be developed in any programming
language. This IBM® Redbooks® publication shows how to break out a traditional Java EE
application into separate microservices and provides a set of code projects that illustrate the various
steps along the way. These code projects use the IBM WebSphere® Application Server Liberty, IBM
API ConnectTM, IBM Bluemix®, and other Open Source Frameworks in the microservices
ecosystem. The sample projects highlight the evolution of monoliths to microservices with Java and
Node.

  microservices sequence diagram example: Spring System Design in Practice Rodrigo
Santiago, 2025-05-05 Transform raw requirements into scalable, resilient web applications with
Spring, and build secure, high-performance systems from the ground up using expert guidance and
best practices Key Features Establish yourself as the go-to person for strategic decision-making and
solutions design with proven strategies Write clean, modular, and testable code with the power of
dependency injection Optimize your development efforts by artfully connecting diverse use cases
with the right Spring components Purchase of the print or Kindle book includes a free PDF eBook
Book DescriptionSoftware system design goes beyond just writing code—it requires a structured
approach to translating real-world requirements into scalable, maintainable solutions. With Rodrigo
Santiago’s hands-on mentoring style and Java Spring expertise, he makes system design accessible
to developers at all levels. Spring System Design in Practice guides you through building robust
software architectures with Spring. From breaking down complex business needs into actionable use
cases to implementing services using Spring Boot, this book equips you with the tools and best
practices needed for developing secure, high-performance applications. You'll explore inter-service
communication, security, and aspect-oriented programming to streamline development. Covering
microservices architecture, the book demonstrates how to create self-configuring, resilient, and
event-driven services that integrate seamlessly into the cloud. Through hands-on experience, you'll
apply best practices to enhance reliability and scalability while tackling complex challenges such as
state management, resilience patterns, concurrency issues, and distributed transactions—including
bottlenecks related to asynchronous and reactive programming.By the end of this book, you'll have
the confidence to analyze system requirements and design well-structured, scalable
architectures.What you will learn Implement microservices for scalable, resilient web systems Break
down business goals into well-structured product requirements Weigh tradeoffs between writing
asynchronous vs. synchronous services and SQL vs. NoSQL storage Accelerate service development
and reliability through the adoption of test-driven development Identify and eliminate hidden
performance bottlenecks to maximize speed and efficiency Achieve real-time processing and
responsiveness in distributed environments Who this book is for If you're an entry-level IT
professional with junior to mid-level Java and Spring experience, this pragmatic guide will fast-track
your journey to mastering the Spring ecosystem. Designed to accelerate your career path toward
becoming a senior software engineer, system architect, technical lead, or aspiring CTO, it provides
clear explanations of the Spring ecosystem and its intricate patterns. For experienced developers or
architects, this book offers essential insights and hands-on knowledge to deepen your architectural
skills and design resilient web systems.
  microservices sequence diagram example: Design It! Michael Keeling, 2017-10-18 Don't
engineer by coincidence-design it like you mean it! Filled with practical techniques, Design It! is the
perfect introduction to software architecture for programmers who are ready to grow their design
skills. Lead your team as a software architect, ask the right stakeholders the right questions, explore
design options, and help your team implement a system that promotes the right -ilities. Share your
design decisions, facilitate collaborative design workshops that are fast, effective, and fun-and
develop more awesome software! With dozens of design methods, examples, and practical
know-how, Design It! shows you how to become a software architect. Walk through the core
concepts every architect must know, discover how to apply them, and learn a variety of skills that
will make you a better programmer, leader, and designer. Uncover the big ideas behind software
architecture and gain confidence working on projects big and small. Plan, design, implement, and
evaluate software architectures and collaborate with your team, stakeholders, and other architects.
Identify the right stakeholders and understand their needs, dig for architecturally significant
requirements, write amazing quality attribute scenarios, and make confident decisions. Choose
technologies based on their architectural impact, facilitate architecture-centric design workshops,
and evaluate architectures using lightweight, effective methods. Write lean architecture descriptions
people love to read. Run an architecture design studio, implement the architecture you've designed,
and grow your team's architectural knowledge. Good design requires good communication. Talk

about your software architecture with stakeholders using whiteboards, documents, and code, and
apply architecture-focused design methods in your day-to-day practice. Hands-on exercises,
real-world scenarios, and practical team-based decision-making tools will get everyone on board and
give you the experience you need to become a confident software architect.
  microservices sequence diagram example: Transforming Your Business with AWS Philippe
Abdoulaye, 2021-10-06 Expert guidance on how to use Amazon Web Services to supercharge your
digital services business In Transforming Your Business with AWS: Getting the Most Out of Using
AWS to Modernize and Innovate Your Digital Services, renowned international consultant and
sought-after speaker Philippe Abdoulaye delivers a practical and accessible guide to using Amazon
Web Services to modernize your business and the digital services you offer. This book provides you
with a concrete action plan to build a team capable of creating world-class digital services and
long-term competitive advantages. You'll discover what separates merely average digital service
organizations from the truly outstanding, as well as how moving to the cloud will enable your
business to deliver your services faster, better, and more efficiently. This book also includes: A
comprehensive overview of building industry-leading digital service delivery capabilities, including
discussions of the development lifecycle, best practices, and AWS-based development infrastructure
Explanations of how to implement a digital business transformation strategy An exploration of key
roles like DevOps Continuous Delivery, Continuous Deployment, Continuous Integration,
Automation, and DevSecOps Hands-on treatments of AWS application management tools, including
Elastic Beanstalk, CodeDeploy, and CodePipeline Perfect for executives, managers, and other
business leaders attempting to clarify and implement their organization's digital vision and strategy,
Transforming Your Business with AWS is a must-read reference that answers the why and, most
importantly, the how, of digital transformation with Amazon Web Services.
  microservices sequence diagram example: Microservice Patterns and Best Practices
Vinicius Feitosa Pacheco, 2018-01-31 Explore the concepts and tools you need to discover the world
of microservices with various design patterns Key Features Get to grips with the microservice
architecture and build enterprise-ready microservice applications Learn design patterns and the
best practices while building a microservice application Obtain hands-on techniques and tools to
create high-performing microservices resilient to possible fails Book Description Microservices are a
hot trend in the development world right now. Many enterprises have adopted this approach to
achieve agility and the continuous delivery of applications to gain a competitive advantage. This
book will take you through different design patterns at different stages of the microservice
application development along with their best practices. Microservice Patterns and Best Practices
starts with the learning of microservices key concepts and showing how to make the right choices
while designing microservices. You will then move onto internal microservices application patterns,
such as caching strategy, asynchronism, CQRS and event sourcing, circuit breaker, and bulkheads.
As you progress, you'll learn the design patterns of microservices. The book will guide you on where
to use the perfect design pattern at the application development stage and how to break monolithic
application into microservices. You will also be taken through the best practices and patterns
involved while testing, securing, and deploying your microservice application. At the end of the
book, you will easily be able to create interoperable microservices, which are testable and prepared
for optimum performance. What you will learn How to break monolithic application into
microservices Implement caching strategies, CQRS and event sourcing, and circuit breaker patterns
Incorporate different microservice design patterns, such as shared data, aggregator, proxy, and
chained Utilize consolidate testing patterns such as integration, signature, and monkey tests Secure
microservices with JWT, API gateway, and single sign on Deploy microservices with continuous
integration or delivery, Blue-Green deployment Who this book is for This book is for architects and
senior developers who would like implement microservice design patterns in their enterprise
application development. The book assumes some prior programming knowledge.
  microservices sequence diagram example: Practical Microservices with Dapr and .NET
Davide Bedin, Mark Russinovich, 2022-11-11 Use the innovative, highly portable event-driven

distributed application runtime to simplify building resilient and scalable microservices for cloud
and edge applications. Purchase of the print or Kindle book includes a free eBook in the PDF format.
Key FeaturesBuild resilient, stateless, and stateful microservice applications that run on the cloud
and edgeOvercome common issues in distributed systems, such as low latency and scaling, using any
language and frameworkLearn how to expose and operate Dapr applications with multiple
optionsBook Description This second edition will help you get to grips with microservice
architectures and how to manage application complexities with Dapr in no time. You'll understand
how Dapr simplifies development while allowing you to work with multiple languages and platforms.
Following a C# sample, you'll understand how Dapr's runtime, building blocks, and software
development kits (SDKs) help you to simplify the creation of resilient and portable microservices.
Dapr provides an event-driven runtime that supports the essential features you need for building
microservices, including service invocation, state management, and publish/subscribe messaging.
You'll explore all of those in addition to various other advanced features with this practical guide to
learning Dapr. With a focus on deploying the Dapr sample application to an Azure Kubernetes
Service cluster and to the Azure Container Apps serverless platform, you'll see how to expose the
Dapr application with NGINX, YARP, and Azure API Management. By the end of this book, you'll be
able to write microservices easily by implementing industry best practices to solve problems related
to distributed systems. What you will learnUse Dapr to create services, invoking them directly and
via pub/subDiscover best practices for working with microservice architecturesLeverage the actor
model to orchestrate data and behaviorExpose API built with Dapr applications via NGINX and
Azure API ManagementUse Azure Kubernetes Service to deploy a sample applicationMonitor Dapr
applications using Zipkin, Prometheus, and GrafanaScale and load test Dapr applications on
KubernetesGet to grips with Azure Container Apps as you combine Dapr with a serverless
platformWho this book is for This book is for developers looking to explore and implement
microservices architectures in Dapr applications using .NET examples. Whether you are new to
microservices or have knowledge of this architectural approach and want to get hands-on experience
using Dapr, you'll find this book useful. Familiarity with .NET will help you to understand the C#
samples and code snippets used in the book.
  microservices sequence diagram example: Dependable Software Engineering. Theories,
Tools, and Applications Xinyu Feng, Markus Müller-Olm, Zijiang Yang, 2018-08-25 This book
constitutes the proceedings of the Third International Symposium on Dependable Software
Engineering: Theories, Tools, and Applications, SETTA 2018, held in Beijing, China, in September
2018. The 9 full papers presented together with 3 short papers were carefully reviewed and selected
from 22 submissions. The purpose of SETTA is to provide an international forum for researchers and
practitioners to share cutting-edge advancements and strengthen collaborations in the field of
formal methods and its interoperability with software engineering for building reliable, safe, secure,
and smart systems.
  microservices sequence diagram example: Building Micro-Frontends Luca Mezzalira,
2021-11-17 What's the answer to today's increasingly complex web applications? Micro-frontends.
Inspired by the microservices model, this approach lets you break interfaces into separate features
managed by different teams of developers. With this practical guide, Luca Mezzalira shows software
architects, tech leads, and software developers how to build and deliver artifacts atomically rather
than use a big bang deployment. You'll learn how micro-frontends enable your team to choose any
library or framework. This gives your organization technical flexibility and allows you to hire and
retain a broad spectrum of talent. Micro-frontends also support distributed or colocated teams more
efficiently. Pick up this book and learn how to get started with this technological breakthrough right
away. Explore available frontend development architectures Learn how microservice principles
apply to frontend development Understand the four pillars for creating a successful micro-frontend
architecture Examine the benefits and pitfalls of existing micro-frontend architectures Learn
principles and best practices for creating successful automation strategies Discover patterns for
integrating micro-frontend architectures using microservices or a monolith API layer

  microservices sequence diagram example: Microservices Antonio Bucchiarone, Nicola
Dragoni, Schahram Dustdar, Patricia Lago, Manuel Mazzara, Victor Rivera, Andrey Sadovykh,
2019-12-11 This book describes in contributions by scientists and practitioners the development of
scientific concepts, technologies, engineering techniques and tools for a service-based society. The
focus is on microservices, i.e cohesive, independent processes deployed in isolation and equipped
with dedicated memory persistence tools, which interact via messages. The book is structured in six
parts. Part 1 “Opening” analyzes the new (and old) challenges including service design and
specification, data integrity, and consistency management and provides the introductory information
needed to successfully digest the remaining parts. Part 2 “Migration” discusses the issue of
migration from monoliths to microservices and their loosely coupled architecture. Part 3 “Modeling”
introduces a catalog and a taxonomy of the most common microservices anti-patterns and identifies
common problems. It also explains the concept of RESTful conversations and presents insights from
studying and developing two further modeling approaches. Next , Part 4 is dedicated to various
aspects of “Development and Deployment”. Part 5 then covers “Applications” of microservices,
presenting case studies from Industry 4.0, Netflix, and customized SaaS examples. Eventually, Part
6 focuses on “Education” and reports on experiences made in special programs, both at academic
level as a master program course and for practitioners in an industrial training. As only a joint effort
between academia and industry can lead to the release of modern paradigm-based programming
languages, and subsequently to the deployment of robust and scalable software systems, the book
mainly targets researchers in academia and industry who develop tools and applications for
microservices.
  microservices sequence diagram example: Communicating Process Architectures 2017 &
2018 J. Bækgaard Pedersen, K. Chalmers, J.F. Broenink, 2019-03-26 Concurrent and parallel
systems are intrinsic to the technology which underpins almost every aspect of our lives today. This
book presents the combined post-proceedings for two important conferences on concurrent and
parallel systems: Communicating Process Architectures 2017, held in Sliema, Malta, in August 2017,
and Communicating Process Architectures 2018, held in Dresden, Germany, in August 2018. CPA
2017: Fifteen papers were accepted for presentation and publication, they cover topics including
mathematical theory, programming languages, design and support tools, verification, and multicore
infrastructure and applications ranging from supercomputing to embedded. A workshop on
domain-specific concurrency skeletons and the abstracts of eight fringe presentations reporting on
new ideas, work in progress or interesting thoughts associated with concurrency are also included in
these proceedings. CPA 2018: Eighteen papers were accepted for presentation and publication, they
cover topics including mathematical theory, design and programming language and support tools,
verification, multicore run-time infrastructure, and applications at all levels from supercomputing to
embedded. A workshop on translating CSP-based languages to common programming languages and
the abstracts of four fringe presentations on work in progress, new ideas, as well as demonstrations
and concerns that certain common practices in concurrency are harmful are also included in these
proceedings. The book will be of interest to all those whose work involves concurrent and parallel
systems.
  microservices sequence diagram example: Solutions Architect's Handbook Saurabh
Shrivastava, Neelanjali Srivastav, 2024-03-29 From fundamentals and design patterns to the latest
techniques such as generative AI, machine learning and cloud native architecture, gain all you need
to be a pro Solutions Architect crafting secure and reliable AWS architecture. Get With Your Book:
PDF Copy, AI Assistant, and Next-Gen Reader Free Key Features Hits all the key areas -Rajesh
Sheth, VP, Elastic Block Store, AWS Offers the knowledge you need to succeed in the evolving
landscape of tech architecture - Luis Lopez Soria, Senior Specialist Solutions Architect, Google A
valuable resource for enterprise strategists looking to build resilient applications - Cher Simon,
Principal Solutions Architect, AWS Book DescriptionBuild a strong foundation in solution
architecture and excel in your career with the Solutions Architect’s Handbook. Authored by
seasoned AWS technology leaders Saurabh Shrivastav and Neelanjali Srivastav, this book goes

beyond traditional certification guides, offering in-depth insights and advanced techniques to meet
the specific needs and challenges of solutions architects today. This edition introduces exciting new
features that keep you at the forefront of this evolving field. From large language models and
generative AI to deep learning innovations, these cutting-edge advancements are shaping the future
of technology. Key topics such as cloud-native architecture, data engineering architecture, cloud
optimization, mainframe modernization, and building cost-efficient, secure architectures remain
essential today. This book covers both emerging and foundational technologies, guiding you through
solution architecture design with key principles and providing the knowledge you need to succeed as
a Solutions Architect. It also sharpens your soft skills, providing career-accelerating techniques to
stay ahead. By the end of this book, you will be able to harness cutting-edge technologies, apply
practical insights from real-world scenarios, and enhance your solution architecture skills with the
Solutions Architect's Handbook.What you will learn Explore various roles of a solutions architect in
the enterprise Apply design principles for high-performance, cost-effective solutions Choose the best
strategies to secure your architectures and boost availability Develop a DevOps and CloudOps
mindset for collaboration, operational efficiency, and streamlined production Apply machine
learning, data engineering, LLMs, and generative AI for improved security and performance
Modernize legacy systems into cloud-native architectures with proven real-world strategies Master
key solutions architect soft skills Who this book is for This book is for software developers, system
engineers, DevOps engineers, architects, and team leaders who already work in the IT industry and
aspire to become solutions architect professionals. Solutions architects who want to expand their
skillset or get a better understanding of new technologies will also learn valuable new skills. To get
started, you'll need a good understanding of the real-world software development process and some
awareness of cloud technology.
  microservices sequence diagram example: Embracing Microservices Design Ovais
Mehboob Ahmed Khan, Nabil Siddiqui, Timothy Oleson, Mark Fussell, 2021-10-29 Develop
microservice-based enterprise applications with expert guidance to avoid failures and technological
debt with the help of real-world examples Key FeaturesImplement the right microservices adoption
strategy to transition from monoliths to microservicesExplore real-world use cases that explain
anti-patterns and alternative practices in microservices developmentDiscover proven
recommendations for avoiding architectural mistakes when designing microservicesBook
Description Microservices have been widely adopted for designing distributed enterprise apps that
are flexible, robust, and fine-grained into services that are independent of each other. There has
been a paradigm shift where organizations are now either building new apps on microservices or
transforming existing monolithic apps into microservices-based architecture. This book explores the
importance of anti-patterns and the need to address flaws in them with alternative practices and
patterns. You'll identify common mistakes caused by a lack of understanding when implementing
microservices and cover topics such as organizational readiness to adopt microservices,
domain-driven design, and resiliency and scalability of microservices. The book further demonstrates
the anti-patterns involved in re-platforming brownfield apps and designing distributed data
architecture. You'll also focus on how to avoid communication and deployment pitfalls and
understand cross-cutting concerns such as logging, monitoring, and security. Finally, you'll explore
testing pitfalls and establish a framework to address isolation, autonomy, and standardization. By
the end of this book, you'll have understood critical mistakes to avoid while building microservices
and the right practices to adopt early in the product life cycle to ensure the success of a
microservices initiative. What you will learnDiscover the responsibilities of different individuals
involved in a microservices initiativeAvoid the common mistakes in architecting microservices for
scalability and resiliencyUnderstand the importance of domain-driven design when developing
microservicesIdentify the common pitfalls involved in migrating monolithic applications to
microservicesExplore communication strategies, along with their potential drawbacks and
alternativesDiscover the importance of adopting governance, security, and monitoringUnderstand
the role of CI/CD and testingWho this book is for This practical microservices book is for software

architects, solution architects, and developers involved in designing microservices architecture and
its development, who want to gain insights into avoiding pitfalls and drawbacks in distributed
applications, and save time and money that might otherwise get wasted if microservices designs fail.
Working knowledge of microservices is assumed to get the most out of this book.

Related to microservices sequence diagram example
What are microservices? The microservices pattern language is your guide when designing an
architecture: service collaboration, testing, deployment, common crosscutting concerns and more
Microservices Pattern: Microservice Architecture pattern I appreciate how you highlighted the
benefits of microservices, such as increased scalability and faster development cycles, while also
addressing the potential challenges involved. Your
A pattern language for microservices Hi there! I'm looking to learn how to build multi-tenant
microservices. Can you recommend some resources?
Pattern: Transactional outbox - Microservices Using this pattern and thinking in microservices,
once each service has its own database, should I have an Outbox table in each service database or
should I have a common (centralized)
Pattern: Saga - Microservices In a portfolio of hundreds of microservices with dozens of key biz
transactions each with 3-5 participating services, how to make sure sagas are implemented properly
across all service
Pattern: API Gateway / Backends for Frontends - Microservices The granularity of APIs
provided by microservices is often different than what a client needs. Microservices typically provide
fine-grained APIs, which means that clients need to interact
Pattern: Event sourcing - Microservices Related to microservices, and depending on the case,
you can "concentrate" the SAGA in one service, or the SAGA process (its steps) can be distributed in
different services that react to the
Pattern: Shared database - Microservices Several microservices maintaining connection pools to
the same database creates contention. Multiple independent processes accessing the database via
some ORM layer can cause hard
Pattern: Messaging - Microservices The Domain-specific protocol pattern is an alternative
pattern The RPI pattern is an alternative pattern See also My book Microservices patterns describes
inter-communication in depth
Essential characteristics of the microservice architecture: loosely Avoid the pitfalls of
adopting microservices and learn essential topics, such as service decomposition and design and
how to refactor a monolith to microservices
What are microservices? The microservices pattern language is your guide when designing an
architecture: service collaboration, testing, deployment, common crosscutting concerns and more
Microservices Pattern: Microservice Architecture pattern I appreciate how you highlighted the
benefits of microservices, such as increased scalability and faster development cycles, while also
addressing the potential challenges involved. Your
A pattern language for microservices Hi there! I'm looking to learn how to build multi-tenant
microservices. Can you recommend some resources?
Pattern: Transactional outbox - Microservices Using this pattern and thinking in microservices,
once each service has its own database, should I have an Outbox table in each service database or
should I have a common (centralized)
Pattern: Saga - Microservices In a portfolio of hundreds of microservices with dozens of key biz
transactions each with 3-5 participating services, how to make sure sagas are implemented properly
across all service
Pattern: API Gateway / Backends for Frontends - Microservices The granularity of APIs
provided by microservices is often different than what a client needs. Microservices typically provide
fine-grained APIs, which means that clients need to interact
Pattern: Event sourcing - Microservices Related to microservices, and depending on the case,

you can "concentrate" the SAGA in one service, or the SAGA process (its steps) can be distributed in
different services that react to
Pattern: Shared database - Microservices Several microservices maintaining connection pools to
the same database creates contention. Multiple independent processes accessing the database via
some ORM layer can cause hard
Pattern: Messaging - Microservices The Domain-specific protocol pattern is an alternative
pattern The RPI pattern is an alternative pattern See also My book Microservices patterns describes
inter-communication in depth
Essential characteristics of the microservice architecture: loosely Avoid the pitfalls of
adopting microservices and learn essential topics, such as service decomposition and design and
how to refactor a monolith to microservices

Back to Home: https://old.rga.ca

https://old.rga.ca

